Пример №32 из задания 10

В ящике находятся черные и белые шары, причем черных в 3 раза больше, чем белых. Из ящика случайным образом достали один шар. Найдите вероятность того, что он будет белым.


Решение

Согласно классическому определению вероятностей имеем формулу \displaystyle P(A)=\frac{m}{n}, где m – число благоприятных исходов, а n – количество всех исходов.

Пусть в ящике было x белых шаров (благоприятные исходы). Тогда, черных будет 3x. А всего шаров x+3x=4x (все исходы).

Подставим в формулу и найдем вероятность того, что шар который достали окажется белым»: \displaystyle P(A)=\frac{1x}{4x}=0,25.

Ответ: 0,25.


Источник: ЕГЭ-2017. Математика. 30 тренировочных вариантов экзаменационных работ для подготовки к ЕГЭ. Базовый уровень (вариант №16) (Купить книгу)

Материалы публикуются только для ознакомления и их публикация не преследует за собой никакой коммерческой выгоды. Материалы публикуются только с бумажных и открытых источников. Все ссылки на источник указываются. Если какой-либо из материалов нарушает ваши авторские права, просим немедленно связаться с Администрацией.

Правообладателям