Пример №5 из задания 5

В среднем из 150 садовых насосов, поступивших в продажу, 6 насосов подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос подтекает.


Решение

Согласно классическому определению вероятностей имеем формулу \(\displaystyle P(A)=\frac{m}{n}\), где \(m\) — число благоприятных исходов (в нашем случае насосы которые подтекают), а \(n\) — количество всех исходов (всего насосов).

Насосов подтекает \(6\).

Подставим в формулу и найдем вероятность того, что один случайно выбранный для контроля насос подтекает: \( \displaystyle P(A)=\frac{6}{150}=0,04\).

Ответ: \(0,04\).


Источник: ЕГЭ 2023 Математика. Базовый уровень. Типовые экзаменационные варианты. 30 вариантов (вариант 5) (Купить книгу)