Пример №4 из задания 5

В чемпионате по гимнастике участвуют 32 спортсменки: 8 из Норвегии, 12 из Дании, остальные из Швеции. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Швеции.


Решение

Всего в чемпионате по гимнастике участвуют \(50\) спортсменок (все исходы). Всего спортсменок из Швеции \(32-8-12=12\) (благоприятные исходы).

Применим классическое определение вероятности \( \displaystyle P(A)=\frac{m}{n}\), где \(m\) — все исходы, \(n\) — благоприятные исходы.

Подставим в формулу значения и получим, что вероятность того, что спортсменка, выступающая первой, окажется из Швеции равна \( \displaystyle P(A)= \frac{12}{32}=0,375\).

Ответ: \(0,375\).


Источник: ЕГЭ 2023 Математика. Базовый уровень. Типовые экзаменационные варианты. 30 вариантов (вариант 4) (Купить книгу)