Пример №43 из задания 23

Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 11, а одна из диагоналей ромба равна 44. Найдите углы ромба.


Решение

Нарисуем условие:

Пусть диагональ BD=44. Диагонали ромба точкой пересечения делятся пополам:

BO=DO=44 \div 2=22.

Рассмотрим прямоугольный треугольник BOF. В нем катет OF=11 равен половине гипотенузы OB=22, значит угол лежащий на против данного катета равен \angle FBO=30^{\circ} (в прямоугольном треугольнике катет, лежащий напротив угла 30^{\circ}, равен половине гипотенузы).

Диагонали ромба являются биссектрисами его углов (биссектриса делит угол пополам):

\angle ABC=\angle ADC=2 \cdot \angle CBO=2 \cdot 30^{\circ}=60^{\circ}.

Найдём два других угла:

\angle BCD=\angle BAD=180^{\circ}-\angle ABC=180^{\circ}-60^{\circ}=120^{\circ}.

Ответ: 60^{\circ}, 60^{\circ}, 120^{\circ}, 120^{\circ}.


Источник: ОГЭ 2025. Математика. 50 вариантов. Типовые варианты экзаменационных заданий от разработчиков ОГЭ. Ященко И. В. (вариант 42) (Решебник)

Материалы публикуются только для ознакомления и их публикация не преследует за собой никакой коммерческой выгоды. Материалы публикуются только с бумажных и открытых источников. Все ссылки на источник указываются. Если какой-либо из материалов нарушает ваши авторские права, просим немедленно связаться с Администрацией.

Правообладателям