В среднем из 1400 садовых насосов, поступивших в продажу, 14 насосов подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.
Решение
Согласно классическому определению вероятностей имеем формулу \displaystyle P(A)=\frac{m}{n}, где m – число благоприятных исходов (в нашем случае насосы которые не подтекают), а n – количество всех исходов (всего насосов).
Насосов не подтекает 1400-14=1386.
Подставим в формулу и найдем вероятность того, что один случайно выбранный для контроля насос подтекает: \displaystyle P(A)=\frac{1386}{1400}=0,99.
Ответ: 0,99.
Источник: ЕГЭ 2022. Единый государственный экзамен. Математика. Базовый уровень. Типовые тестовые задания. 12 вариантов (вариант 1) (Купить книгу)