Пример №69 из задания 11

На олимпиаде по химии участников рассаживают по трем аудиториям. В первых двух аудиториях сажают по 140 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчете выяснилось, что всего было 400 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.


Решение

Согласно классическому определению вероятностей имеем формулу \displaystyle P(A)=\frac{m}{n}, где m – число благоприятных исходов, а n – количество всех исходов.

В запасной аудитории участников олимпиады будет 400-140-140=120 человек (благоприятные исходы). А количество всех участников (благоприятные исходы) – 400.

Подставим в формулу и найдем вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории: \displaystyle P(A)=\frac{120}{400}=0,3.

Ответ: 0,3.


Источник: ЕГЭ 2022. Единый государственный экзамен. Математика. Базовый уровень. Готовимся к итоговой аттестации. Учебное пособие (задание 1.13.56) (Купить книгу)

Материалы публикуются только для ознакомления и их публикация не преследует за собой никакой коммерческой выгоды. Материалы публикуются только с бумажных и открытых источников. Все ссылки на источник указываются. Если какой-либо из материалов нарушает ваши авторские права, просим немедленно связаться с Администрацией.

Правообладателям