В среднем из \(1500\) садовых насосов, поступивших в продажу, \(3\) подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.
Решение
Согласно классическому определению вероятностей имеем формулу \(\displaystyle P(A)=\frac{m}{n}\), где \(m\) – число благоприятных исходов (в нашем случае насосы которые не подтекают), а \(n\) – количество всех исходов (всего насосов).
Насосов не подтекает \(1500-3=1497\).
Подставим в формулу и найдем вероятность того, что один случайно выбранный для контроля насос подтекает: \( \displaystyle P(A)=\frac{1497}{1500}=0,998\).
Ответ: \(0,998\).
Источник: ЕГЭ 2022. Единый государственный экзамен. Математика. Базовый уровень. Готовимся к итоговой аттестации. Учебное пособие (задание 1.13.48) (Купить книгу)